
R e zz 0,5861 1, (L). 
When L>t, if y<p,(L), the stationary wave is stable irrespective of the shape of 

the cylinder. When P> P* (L), we determine the critical size of the square as l? =- 

siliy* (L, P). where p*(L,p) is a transformation of the formula for the neutral hypersurface 
p = p(p,L). For a specified L and p)p*(L), a stationary wave in a cylinder of square cross- 
section with a length of a side of the square 1( I, is stable. When 1 = I, there is a loss 
of stability and, when there is a "short" perturbation, the solution corresponding to this 
instability is a stationary wave which is now inhomogeneous with respect to the variables 5 
and y. 

The author thanks G.G. Chernyi for discussing the results. 
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ON THE THEORY OF THE FILTRATION OF A LIQUID IN A POROUS MEDIUM UNDER BULK 
HEATING BY A HIGH-FREQUENCY ELECTRO~GNETIC FIELD* 

XUONG NGOC HAI, A.G. KDTDSHHV and R.I. NIGMATULIN 

The process of the filtration and warming up of an extremely viscous 
liquid {bitumen) in a porous medium where there is a bulk thermal source 
due to the absorption of energy from a high-frequency electromagnetic 
field fhfemf) is investigated. This problem is associated with the 
analysis of bituminous oils /l/, the filtration of which is only realized 
in practiceafter a preliminary heating of the reservoir with the help 
of a hfemf, for example /2-5/. 

It is assumed that the bitument is initially either in the liquid (mobile) or solid 
(immobile) state. Undertheaction of the bulk thermal source, the bitumen is heated, where- 
upon it melts, expands, flows, and moves with respect to the immobile, solid, porous skeleton 
of the rock under the pressure differential which is created. A closed system of differential 
equations is obtained and fundamental dimensionless similarity criteria are established which 
characterize the above-mentioned processes. The different types of stationary or limiting 
solutions which are realized during stationary or sufficiently lengthy heating of the medium 
are studied. When they exist, these solutions may be used to estimate the effectiveness of 
the actual process (to estimate the limiting length of the fusion zone, the extent of heating 
of the liquid bitumen and the characteristic time required for the process to attain a 
stationary state, etc., for example) and as tests to check the correctness of the various 
approximate and numerical methods for solving the resulting system of non-linear differential 
equations. 

*Prikl.Matem.I4ekhan.,51,1,29-38,1987 
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The ,problem being considered differs from the classical Stefan problem on fusion and 
solidification processes /6, 7/ where it is assumed that the system is a single-component 
system, that there is no motion of the medium or convective transfer of the heat associated 
with it and that external supply of heat only takes place on the boundaries of the region 
under investigation (i.e. there is no bulk heat source present). 

1. Basic assumptions and equations. The processes involved in the heating, 
fusion, and filtration of bitumen axe investigated by the methods of the mechanics of multiphase 
continuous media under the following basic assumptions: the temperatures of the phases are the 
same in each elementary volume element of the porous medium; a phase transition (fusion or 
solidification) occurs on the discontinuity which separates the zones of the porous filled with 
the liquid and the solid bituminous phases (that is, there are no zones where the liquid and 
solid bituminous phases mix); the motion of the molten bitument in the rock is inertialess and 
obeys Darcy's law; there is no change in the volume of the non-molten (solid) phase or any 
deformation of the rock skeleton. The basic equations for the conservation of the masses and 
momenta of the phases and the energy of the mixture, subject to the above-mentioned assumptions, 
are considered in the case of a one-dimensional symmetric motion (v = 0, 1, and 2 correspond 
to the cases of planar, cylindrical and spherical symmetry for the motion) in an Euler coordinate 
system /8-lo/. 

We shall employ the following notation. The subscripts i = 1,2, and 3 refer respectively 
to the parameters of the mobile liquid bitumen phase, the immobile (solid) bitumen phase and 
the rock skeleton. The subscript s refers to parameters on the melting line and the indices 0 
and b refer to the parameters of the initial state and on the boundary of a pore respectively. 
We denote by pirui, ci and hi the true density, the rate of filtration, the specific heat capacity 
and the thermal conductivity of the i-th phase (i = 1,2 and 3). Purther p and n1 are the 
pressure and viscosity of the liquid, k and m are the permeability and porosity of the rock 
(k, m = const), T is the temperature, xb is the coordinate of the Wall of the pore and x4(t) is 
the coordinate of the melting surface. 
p3cs, h(O = mhi + (1 - m) h,, m -i-i 

we also introduce the quantities (PC)(i) = mpg* + (1 -m) 

(molten bitumen) phase, 
const, i = 1.2. Inthe regionofthemobilephase, thatis,the liquid 

zb<x<x.,(t), T> T,. We shall'write the equations for the conservation 
of mass, momentum and energy in the form 

G @apa) + +-&@)=o, zJr+ -$ (1.1) 

(PC)(') + f $3rcru~+$.-& (h(l)+) + rr"' f .4'" 

where A(t) is the work of viscous forces, q(e) is the intensity of the bulk thermal source due 
to the absorption of energy from a high-frequency electro-magnetic field. We next consider 
the case when A(*)((@) and the quantity A(*) may be neglected. The viscosity of the liquirl 
is temperature dependent (rl = rl(!!')), 

In the immobile (soli'd bitumen) phase region s>z&(t), t>t,, we have 

(pc)(@~=~~(b(z~zY~)+ q”‘, u*=O, ps=const WI 

On the boundaries of the region under investigation and the melting front 

x=rb, P = p @b, t& ho’Sb -$ 
I 
x=x +,, = - qb 

b 
0.3) 

s=z4(t), T=T,=const 

where qb = q(sb,t) is the intensity of the total thermal flux through the boundary zb h, > o 

corresponds to the case of the input of heat and qb<O to the case when heat is extracted). 
In the case when To< T, and tct,, the temperature distribution within the medium in 

the region [zbr + co) X [O,t,] is found from the solution of Eqs.(l.Z) .with the boundary conditions 

= = xb, hcB)&, $$- Ix_b+o = _ qb; =-+-l-CD, 

The distribution of thermal sources q@ which arise due to 
the high frequency electromagnetic field is determined from the 
Bouger-Iambert law for a monochromatic wave 

P(e)= -V.R, V.R=R,'La 

T-+To 

the absorption of 
Poynting equation 

(i-4) 

energy from 
and the 

(1.5) 
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where R is the radiation intensity vector and LR is the absorption length, which characterizes 
the degree of absorption of energy from the electromagnetic wave by the medium under consider- 
ation. In the case of the propagation of a one-dimensional (planar, cylindrical or spherical) 
monochromatic wave in a homogeneous and isotropic medium, these equations have the form 

@e' i - lajzVJ&!- 
.zy a= R W) 

In the general case the absorption length L R for a specified medium is determined by the 
frequency of the electromagnetic radiation 0 and depends on the pressure p and the temperature. 
Then, even at a fixed frequency o, the equations fox the thermohlrdrodynamic parameters (1.1) 
and (1.2) and Eq.fl.6) for q(Q and the electrophysical parameter f! are interrelated and must 
be solved jointly. The effect of pressure and temperature on the absorption length & can 
frequently be neglected. The quantity LR, ata fixedfrequency CO, then becomes a parameter 
which is known in advance and immediately determines the intensity of the radiation R and the 
intensity of the bulk thermal source independently of the solution of the thermohydrodynamic 
equations. Here 

g”) Z L 1 (fp+~) (1.7) 

Rb is the intensity of the radiation on the pore boundary =% which is determined by the power 
iVe) and surface area of the radiator 8, (for Y = OS, = 1 m2, for 'v = 1 S, = 2nzr& (h is the 
power of the radial reservoir) and, for Y = 2 S, = 4~~2). 

The position of the melting surface is determined fromtheconditions of mass balance and 
in the quasistatic (filtration) approximation of the energy balance on the interphase boundary 

Wdt = iimp,, il = es i- qes 11.8) 

Here !h and qs6 axe the thermal fluxes arriving at the interphase surface from the side 
of the mobile and immobile phases, and j and 1 are the intensity and specific heat of the phase 
transition (the difference in the enthalpies of the phases) respectively. 

Linear equations of state axe assumed for the density of the liquid 

PlfP, T) = PI0 + BP kJ - Pof - BT (T - To) (1.9) 

where Bp, @T are the coefficients of compressibility and thermal expansion. Then, the system 

of ~e~ohydr~~amic Eqs.(l.l)-(1.4), (l-7)-(l-9), subject to the initial conditions 

t=O, p =po, T= T, (1.10) 

is closed and can be solved. 
In the general case the liquid parameters on the fusion front must be determined using 

the Clausius-Clapeyron equation from the condition that the phases are in equilibrium, In 
the majority of important practical cases, when the melting pressure does not change to any 
great extent : p - p. <pa = pl8 pi (pp -- pIa)-’ 2 , the condition T,= const can be used and this has been 

done in the present paper. 

2. Dimensionless variables and parameters. The following dimensionless variables 
and parameters are introduced: 

%St ZZ--- 
‘R ’ 

x_=+, x,(+*, 
R R 

u+ q=$ 

e=+, p+ M@)z’L’ff), 
k 

5 PI 1T6) 
u*~-_Ei)- 

PIVJ L, 

The subscript * refers to certain characteristic parameters of the medium. 
In the new variables the system of Eqs.(l.l)i(l.$), (1.7)-(1.9) is transformed to two 

differential equations of parabolic type in the region X,(X < X,(z) and a single equation 
of a similar type in the region X>X,(t.)+ the solution of which, when the dissipation of 
energy due to the viscosity of the liquid is neglected (A(l) = 0), depend on the following 
dimensionless parameters which, respectively, characterize: 

the geometrical properties of the space m,v,X, 
the thermophysicalproperties of the phases: 



the relative effect of convective energy transfers 
heat conduction: 
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compared with energy transfer due to 

i = 1, 2) 

fPei and Di are the P&let number and the thermal conductivity of the i-th phase): 
the relative contribution to the change in the energy of the medium from heat conduction 

and fusion processes; 

the effect of the external input of heat and the boundary conditions: 

Assuming that the liquid pahse is incompressible, the problem under consideration reduces 
to a problem on the melting of a substance taking into account convective thermal conductivity 
in the liquid and the existence of an external bulk heat source. In this case the velocity 
and pressure fields in the liquid phase are exoressed in terms of the temperature field in 
the following manner: &,<x-<x, 

When the 

(I = 1) I 
when Y = 1, 

change in the viscosity of the liquid phase with temperature is neglected 
the pressure'field in the liquid is found in an elementary manner. For example, 

P=l+m6X,~ln+ XE[Xb, X,). 

3. Stationary solutions with fixed melting and solidification fronts. Let 
us first consider stationary or limiting solutions of the type 

8pilat = 0, aT/at = 0, X, = const (i = 1, 2) (3.1) 

which correspond to the case of the continuous and constant heating of a porous medium which 
is initially saturated with solid bitumen. In this case u1 = 0 and the problem reduces to 
solving the system of ordinary differential equations with the boundary conditions 

~~xv~~ = - &erp[-(X-Xb)] (i=1+2) (3.2) 

Ki = Pe,NX,* 

X E ]Xb, X,), Ur = 0, P = 1, @I = f - BT (@ - 6,) (3.3) 
X E [X,, -t-co), U, = 0, @'a = const 

X =X,, (d@/dX)r,r,+,, = -Qb = const 

x=x,, @=., j=O, 'de1 -'"I 
G, dX X=X,-O - Gn dX X=x,-t-O 

x-++a~, e-+8, (eo4) 

The general solution of ~q.(3.2) has the form 

v = 0, 0(X) = -&exp I-(X - X*)1 t cx + D 
v = 1, 63(X) = Kiexp XbEi(-X) f CInX i-D 

v = 2, 8 (X)= --Rf exp X,F (X)-C/X -i-D 

F(X)= expf-X)/X + Ei(-X) 
i-m 

Ei(-X)=- 
s 

$<O* X>fJ 

(3.4 

where X, is a dimensionless parameter which characterizes the ratio of the heat evolution and 
heat conduction, C and D are constants of integration, and Ei(-X) is the integral exponential. 
function. We note that, usually, xb<l and therefore sxp Xb= 1. 

Assertion 1. No solution of the system of Eqs.(3.2) which satisfies conditions (3.3) 
exists for v =O.I. 

Proof. It is obvious from the general solution (3.4) that, in order to satisfy the last 
condition of (3.31, it is necessary to put C=O, D= %. BY virtue of the inequalities KiarpI- 

(x - xb)l< 0 (for Y = 0) and K+esp &Ei(-X)<O (for v=i) when xEefx,.+m), it follows 
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that, for any X ~fX~,+m), we have e(X)d% that is, no coordinate X, exists such that 
e(X,)= 1743, when X = X,. 

Assertion 2. A unique solution of the system of Eqs.(3.2) which satisfies conditions 
(3.3) exists for v = 2 when K, 2 K, - - (1 - @,)/fexp (Xb)*Ei(-X,)]and Qa = 0. At the same 
time X,> Xb in the case when R,> K,. 

Proof. For v=2, the temperature profile in the medium (3.4) satisfies conditions 
(3.3) if the constants of integration are defined in the following manner: 

X E [Xbr x,), c = -(K, ,- Qbxb’), D = i + c&-’ i_ f& SXp xb F (x,) (3.5) 

x E IX,,+ w), c ==-a,[~ - e,+ K,exp x~F(x,)), ~=e@ (3.6) 

and the equation 

Z(X) = X,-kQ&Xba+ V(X)- XY(X)- 0 (3.7) 

V (X) = i - eXp i--(x - xbt] Y fx) = &-’ (i - e,) - eXp xb Ei (-X) 

is obtained from (3.3) for determining the site of th&melting front X,. (In this case, the 

terms containing Qb are equal to zero. Relationships (3.5)-(3.7) are also true in the case 
when Qb#o.) 

Let us prove the existence and uniqueness of the solution 
Of Eq. (3.7) when Qb = 0. We consider the functions V(X) and 
XY(X). When KI>,K,, it follows, by virtue of the monotonicity 

8 of the negative increasing function Ei(-X), that the equation 
Y(X) = 0 has a unique root X= X, in the region X>Xb and, 

Y 
moreover, if KS= K,, then X,ss Xb. In the region X ea[X*,+ m) 

XY(X) is a non-negative function which increases monotonicity 
from 0 to -I-= andV(X)is a bounded, positive, increasing 
function. In the above-mentioned region, d (XY)/dX > dVhiX, 

whence it follows that, in this region, the graphs of the 

2 functions XYfX) and V(X) intersect at one and only one point 
which correspnds to the coordinate of the melting front X, 
and where V(X) - XY(X)= 0. Sn the region XE[X~,X*), we have 
XY(X)<O, V(X)>O, i.e. the graphs of these functions do not 
intersect one another (the right-hand upper part of Fig.1). 

0 
I If Q.,+R an analogous assertion can be proved in 

the following cases: 

Fig.1 
1) K, < K,, Qb > OandQbXba - &XbY (xi,) > 0; 

2) K%>K,, Qb>O (and assertion 2 corresponds to the 
special case when &= 0); 

3) K, > K,, Qb < Oand I QbXbz I c K,X,Y (X,) 

In the case when K,>K*, Qt, < 0, K,XbY (X6) < 1 QaXb’ I< RXV (X,), the existence and 
uniqueness of a two-profile solution of problem (3.2) with the following conditions: 

x E Ix,, X,'), u, = 0, @'a = eon!& (3.8) 
x E IX,‘, X,“), u, = 0, P = 1, #I = 1 - BT (e - e,) 
x E IX,“, +m), u, = 0, a8 = const 
X = X,, (dO/dX)x=xb+o = -Qb = const 

x=x,', @=I, j=O. $gIr=r;_O=+$$-lr__re+O 8 

X=X,", 8~1, j=O, $-$lx_xL_O= ' dB q dX I X-X,"+0 
X-t-t-=J, 0-4, (e,a) 

can be proved. 
In this case the coordinates of the fronts X,‘,X,“(X,‘<X,“) are determined by the same 

Eq.(3.7) which now has two roots and the constants of integration take the following values: 
when XEIX~, X,‘) they are the same as in (3.5) with the replacement of Kr by KS and X, by 

they are the same as in (3.6) with the resplacement of X, by X," 

c = - Kl exp xb &, [ ” F (x.3 - F (XI”)] 

D=1--KzexpX b & [x; F (xi) - x,” F tx‘?l 
* * 
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NO stationary solution of the given type exists in the remaining cases. We note that the 
parameter K, characterizes, when the rest of the conditions are identical, the possibility of 
the establishment of a stationary (immobile) melting surface in a medium which is subjected to 
long-term heating by thermal sources of the type of (1.7) with powers K,>K,. 

Several examples of the solution of problems (3.2)-(3.3) and (3.2), (3.8) are presented 
in Fig.1 for the vales K,=0.82, K,= 0.75 which correspond, for example, to the following values 
of the phase parameters and the parameters of the spatial heat sources: T, = 293 K, T8 = 343 K, 
X, = 0.6 W/m-K, h,= 1.2 W/m.K, h, = 5.8 W/m.K, m = 0.5, L, = 25 m, N('J -- 280 kV, zb = 0,15 m. 

Curve 1 corresponds to the single profile solution of problem (3.2) when there is no 
input of heat into the reservoir or withdrawal of heat from it through the boundary of the 
region X= Xb:Qb=O, which is depicted in the right-hand upper part of Fig.1. Curve 2 
illustrates the limiting single profile solution in the case when heat is extracted on the 
boundary X = Xb: Qb = -K,Xb--‘Y (Xb) z -0,026K,X~,".Curve 3 demonstrates the two-profile solution 
which occurs when a more significant amount of heat is extracted through the boundary X = Xb: 
Qb 2: -0.573 X,Xb-=. 

It can be seen (curve 1) that the maximum region in which the medium (bitumen) experience 
a phase transition as the result of the constant action of a spatial heat source (a high- 
frequency electromagnetic field) with a power of 280 kV. covers a considerable distance of 
about 5.1 Lk, that is, around 125 m. The temperature of the liquid bitumen in the neighbourhood 
of a pore attains values of c4.5T,, that is , z-1500 K. In the limiting case of the single 
profile problem, when the greatest extraction of heat through the left-hand boundary of the 
investigated region is realized, the temperature of the bitumen on the wall of the pore is 
lowered to the melting point X= Xb: Tb- T8= 343 K (curve 2). At the same time a sharp lowering 
of the temperature of the bitumen is observed in a very narrow zone close to the interstice. 
Thus, the peak value of the temperature of the liquid bitumen, which is attained at a distance 
of about 0.75 m, is reduced to 3.2 T,, that is, down to =liOO K but the melting front is only 
displaced towards the centre insignificantly (by an account =O,iL,, that is, =2.5m). 

A further increase in the amount of heat Qb which is extracted through the boundary X=Xb 
leads to the appearance of a solidification front (curve 3) but, at the same time, negative 
temperatures are.realized close to the interstice. The actual maximum discharge of heat from 
the productive reservoir through the boundary X=X‘, due to the thermal conductivity of the 
medium is attained when S(Xb)=O. In this case the temperature profile in the medium is 
practically identical to curve 2 which suggests that the real possibility of the discharge of 
heat on the boundary of an interstice only has a small effect on the process. 

The parametersK1(i = 1,2)are the basic dimensionless criteria in stationary solutions 
of the type of (3.1). In the case when j = 0, the dimensionless parameters G) and G, which 
occur in conditions (3.3) or (3.8) are expressed in terms of them: 

GJG, = Pe,/Pe, = K,IK, 

The quantity Le occurring in the parameters Ki may vary due to a change in the frequency 
o. of the electromagnetic radiation. When La is increased, there is an increase in the limiting 
melting zone but, simultaneously, there is an increase in the time of its establishment. Other 
conditions being the same, the maximum practicable melting zone is attained under the action 
of a high-frequency electromagnetic field with a frequency which corresponds to the maximum 
length of the relaxation zone LR. 

It should be noted that, in cases when a stationary solution exists, it is possible to 
estimate the characteristic time of emergence onto a stationary regime, &. For example, in 
the spherical case (v = 2) when the medium is solely heated by a high-frequency electromagnetic 
field (qb = O), the following estimate 

holds on the basis of the single front solution (3.4)-(3.7). 
Here NBt and Qst are the intensity and the overall amount of heat supplied into the 

limiting stationary zone of the molten bitumen with a volume h2, and a mean temperature <T>. 
In the case when a productive reservoir is heated by inputting energy through its 

boundary X = X, solely due to the thermal conductivity of the medium (N= 0, Qs>O), the 
coordinate of the stationary melting front of the bitumen is determined in the following 
manner: 

xjq) = QbXb= I- 0, 
i-_eo' Qb>Q+=F 

On the basis of (3.91, it may be shown that, when one and the same amount of energy is 



26 

fed into reservoirs, the remaining parameters being the same, the limitinq depth of penetration 
of the melting front, in the case of the input of heat through the boundary X = X, which is 
solely due to the thermal conductivity of the medium X$@(Qb>O,N== 0), will be greater than 
the corresponding value in the case when the reservoir is heated solely by a spatial heat 
source of the type of (1.7) XJ(QI = 0, Nf 0). At the same time, the temperature around the 
interstice in the first case T(@(Xb) is far greater than that in the second case r(X,,). 

In the example which has been illustrated by curve 1 in Fig.l, X,= 5.1 L,, T (.X0) z 4.5 TT, 

while Xa(@ z 5.14 La, Tcq) (&) = 136 and T, =: 30 T (&). The insignificant difference which exists in 
the solutions X, and X8(*) 1s due to the fact that, when the reservoir is heated by means of a 
spatial heat source, a large amount of the radiative energy is transmitted into the region 
where the bitumen is solid. In this case, however, a temparture distribution of the medium 
throughout the space is obtained which is more uniform andthe time required for the establish- 
ment of the stationary solution is, obviously, much shorter. 

The stationary solutions which have been obtained are characterized by the existence of 
a singularity at the Centre of the region investigated: e(Xb)++ca as Xb-6. The existence 
of such a singularity may manifest itself in a tangible manner in the fact that a very 
pronounced increase in the temperature of the medium in the neighbourhood of an interstice 
will be observed as the size of the high-frequency electromagnetic field energy generator is 
reduced. In this case, as in the case represented in Fig.1, on account of the hiqh temperature 
of the mediumaround the interstice the solutionswhich have been given may be found to be 
unacceptable due to the need to take account of such additional processes as the deformation 
of the rock skeleton, gas formation, cracking, etc.. On the basis of the general solution 
(3.4), the existence and uniqueness of the solutions of analogous problems in a finite region 

of space [xb,xkl, when different laws are specified regarding the input and extraction of heat 
through the boundaries X=X, and X=Xkr may also be demonstrated. 

It should be noted that, in the general case, it is necessary to take account of the 
reflection of the electromagnetic wave from the melting (solidification) front and the 
difference in the absorption coefficients of the waves for the solid and liquid bitumens. 
Allowance for these factors on the basis of the system of Eqs.(l.l)-(1.41, (l-7)-(1.10) does 
not create any great difficulties and does not have any fundamental effect on the basic results 
which have been obtained. 

4. Stationary solutions of problems of the filtration of a viscous liquid 
in the field of a spatial heat source. Let us consider stationary solutions of the 

type 
dp,/& = 0, Z/at = 0, U = Ul(Z) (x, + +W) (4.1) 

which correspond to the case when there is no solid phase (pa< +CQ) or surface of melting 
in general. The resulting system of equations then takes the following dimensionless form: 

_Gb+ ~~(x’~~ + NXbVexpf-_(X-xa)l 

+-nf1u, u=---& 
1 v Gb = - (%uxv) IX=Xb = 

const > 0 

CD, = 1 + B, (P - 1) - BT (e - 1) 
x = a&,, (d@fdx)xax,+o = -Qb 
X-+$-m, 8-+8,<i-~, p-+p5ac+- 

(0 = TIT,) 

(4.2) 

(4.3) 

In the case when v = 0 or 1, no solution of the system of Eqs.(4.2), exists which 
satisfies conditions (4.3). In fact, in this case, according to the second equation, the 
pressure increases without limit: 

Y = 0, Pa N const GbX + i-00 (4.4) 
Y = 1, Pa-eonstG,InX++m 

which contradicts the last condition of (4.3). 
It can be shown, however, that a solution of the system of equations (4.2) with the 

boundary conditions 

x = x,, p = %, WdX)xexb+o = -Qb; X + j-00, (4.5) 

exists which does not require any constraint on its asymptotic behaviour with respect to 
pressure as X+m. At the same time, the temperature distributions of the liquid have the 
form 

v__o, e(x)-_=1 - R1exp:--_IyXb)l x l_~Xp[-(x-xb)+--l)] 

( x 
f Qb exp [- X(x - Xb)l'K 
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x/x, 

v = 1, e(X)=l+~-l~t(~)xX[l+~+xexpXI, S e~p(-_X~)&+l@,] 

x = Pe,Gb 

The existence of a solution of the system of Eqs.(4.2) with the asymptotic behaviour (4.4) as 
X+-+-a0 shows that, in practice when conditions (4.31 are'satisfied, the stationary heating 
of a reservoir by a spatial energy source of the high-frequency electromagnetic field type 
(1.4) in the case when v=O or 1 must be accompanied by a decrease in the delivery time of 
the liquid. In the limiting case when Gb = 0, the system of Eqs.(4.2) reduces to a single 
heat conduction equation, the solution of which is readily obtained and which uniquely relates 
the density distribution of the liquid to its temperature distribution. At the same time the 
pressure in the liquid will be homogeneous; P(X)= co&, 

In the case when v = 2 it may be shown that a solution of problem (4.2) with the boundary 
conditions (4.3) exists and the temperature field is determined in the following manner: 

8 (X) = 1 +- x-‘K, exp X, {exp (-X) + exp (--XJ [I (X)* (4.6) 
exp (x/X) - Z (+ c0)l) -I- x-'&X,' (exp (X/X) - 1) 

Z(X)= fexp[-(f+x:S-XaWS 

xb 

while the pressure field in the liquid can be found from the solution of the following ordinary 
differential equation: 

G ~~=:1+B,(P-+43+-i) 
b X’ dP (4.7) 

x-t+@% P-+P,<f~ * 
using, for example, a numerical method. In this case on account of the geometry of the space, 
a constant delivery of liquid can be achieved by means of the stationary heating of the 
reservoir by a spatial heat source of type (1.4). 

5 Fig.2 shows the solutions of problem (4.6), (4.7) for K,=0,7i: 
Pe, = 2361, B, = 0.002; Br = 0.15; xb = 0.006 and Qb = 0 which COrrespOnd, 

e for example, to: pb=O.iMPa, p*=pm=3.0 MPa, T*=T,=300 K, 
pl=pm=iOs kg/m3,p, =i.O Pa.s, cl=&1 kj/kg.K, h,= 0.60 W/m.K, 
4 = 5.8 W/m.K, k = 2.0 ?.Irn*, m = 0.3; N@) = 230 kV, 8 = 0; LR = 25 m and 

zs ~=0.15 m. 
Curves1 and 2 illustrate the temperature and pressure distrir- 

butionsinthemediumfor the cases when P~=(T/T,)-'~ which is 
characteristic in the case of a bituminous oil (curve 1) and when 
p1 = pm = const (curve 2) while the deliveries Gb are equal to 0.51) 
(s4Otonfday) and 0.003 (~0.2 ton/day). It can be seen that, when 
account is taken of the effect of temperature on the viscosity of 

Fig.2 
the liquid, this leads to a substantial change in the pressure and 
temperature fields. In this case the temperature of the medium 

around an interstice, on account of the more intense heat transfer, is reduced several-fold 
compared with the case when gl= p,=const. At the same time, the characteristic length of the 
active filtration zone is of the order of 10Ln,i.e. ~250 m. 

In conclusion we note that, although information on the stationary solution is useful 
for estimating the efficiency of the process the study of the non-stationary stage and the 
determination of the dynamics of the process, in particular, when the intensities or the 
action vary with time and finding the optimal laws of irradiation as a function of the 
properties of the medium are of greater interest and more urgent from a theoretical and 
practical point of view. 
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ISOLATION OF SINGULARITIES IN THE SOLUTION OF TWO-DIMENSIONAL PROBLEMS 
OF THE THEORY OF ELASTICITY IN IRRE~U~R MULTIPLY CONNECTS DO~INS* 

A.M. LEVIN 

A general method is considered for isolating the singularities of the 
solutions of a plane problem of the theory of elasticity, a problem of 
the bending of thin elastic plates, and harmonic problems of the theory 
of elasticity in multiply connected domains with boundary breaks. The 
procedure is used to-solve the problems by the method of compensating 
loads (MCL) or the method of integral equations of the first kind /l-6/. 

Fig.1 Fig.2 

In the MCL the components of the directionally deformed state (DOS) are sought as 
potentials which are distributed along contours, spaced a certain distance from the domain 
boundary, rather than distributed along the boundary itself. When the potentials are sub- 
stituted into the boundary conditions, systems of integral equations of the 1st kind are 
obtained in the unknown densities. Methods of regularizing the solution of these equations 
were considered in /3-6/. When the components of the DDS have singularities at corner points 
of the boundary, the modification of the MCL consists in adding to the potentials of the 
singular solutions of homogeneous boundary value problems for the auxiliary wedge-shaped 
domains /?-12/ (Fig-l). However, if the initial domain is multiply connected and the corner 
points axe located on "interior" pieces of the boundary (Fig.2), the solutions for the wedge 
cannot be used in MCL. In this case the cut needed to isolate the one-valued branches of the 
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